
FALL 2024: MATH 790 EXAM 3

Throughout this exam, unless stated otherwise, all vector spaces will be defined over the field F . Each problem
is worth 10 points. You will work in teams on this exam. You may use your notes, the Daily Summary, and any
homework you have done (providing full details), but you may not consult any other sources, including, any algebra
textbook, the internet, any graduate students not on your team, or any professor except your Math 790 instructor.
You may not cite without proof any facts not covered in class or the homework. All members of each team should
contribute to the team’s effort. The solutions should be typeset in LaTex. Each team member should also participate
in the typesetting effort. Each team should turn a hard copy of its solutions at the start of the final exam on Thursday,
December 19 at 10:30am. Good luck on the exam!

1. Write V ∗ for the dual space of V , i.e., L(V, F ). The elements of V ∗ are called linear functionals on V . Let
B := {v1, . . . , vn} be a basis for V .

(i) For each 1 ≤ j ≤ n, define v∗j ∈ V ∗ by v∗j (vi) = 1, if i = j and v∗j (vi) = 0, if i ̸= j1. Show that
B∗ := {v∗1 , . . . , v∗n} is a basis for V ∗. This basis is called the dual basis to B.

(ii) For v ∈ V , define v̂ : V ∗ → F by v̂(f) := f(v), for all f ∈ V ∗. Prove that v̂ ∈ (V ∗)∗ and v̂1, . . . , v̂n is a basis
for (V ∗)∗, the double dual of V .

(iii) Show directly, without using bases, that the map from ϕ : V → (V ∗)∗ given by ϕ(v) := v̂ is an isomorphism
of vector spaces. Because this map is a natural one, we say that V and (V ∗)∗ are canonically isomorphic.
In other words, this maps is independent of the choice of basis, where as V and V ∗ are non-canonically
isomorphic, as any isomorphism between them arises by identifying bases.

Solution. For (i), let f ∈ V ∗, and suppose f(vi) = αi, for 1 ≤ i ≤ n. Then (α1v
∗
1+· · ·+αnv

∗
n)(vi) = αi, for all i, so that

f =
∑n

i=1 αiv
∗
i . Thus, {v∗i } spans V ∗. Suppose

∑
i βiv

∗
i = 0. Then, for any j, 0 = (

∑
i βiv

∗
i )(vj) =

∑
i βiv

∗
i (vj) = βj .

Therefore, {v∗i } is a linearly independent set. Thus {v∗i } is a basis for V ∗. Note: It follows that V and V ∗ have the
same dimension.

For (ii), suppose
∑n

i=1 αiv̂i = 0. For any j we have

0 = (
∑
i

αiv̂i)(v
∗
j ) =

∑
i

αiv̂i(v
∗
j ) =

∑
i

αiv
∗
j (vi) = αj .

This shows that the set {v̂i} is linearly independent. Since (V ∗)∗ has dimension n, the set {v̂i} is a basis for (V ∗)∗.
For (iii), it is easy to check that ϕ is a linear transformation. Suppose ϕ(v) = 0. Then v̂ = 0, so that v̂(f) = f(v) = 0,

for all f ∈ V ∗. This implies v = 0, since otherwise, we could extend v to a basis of V and define f : V → F by
sending v to 1 and all other basis elements to 0, which would be a contradiction. Thus ϕ is 1-1. Since V and (V ∗)∗

have the same dimension, ϕ is an isomorphism. □

2. Maintaining the notation from the previous problem, suppose further that V is an inner product space over
F = R or C.

(i) For v0 ∈ V fixed, show that ϕ : V → F given by ϕ(v) := ⟨v, v0⟩ belongs to V ∗.
(ii) Conversely, given any f ∈ V ∗, prove that there exists a unique v0 ∈ V such that f(v) = ⟨v, v0⟩, for all v ∈ V .

Hint: Work with an orthonormal basis for V .

Solution. Part (i) is immediate from the definition of inner product. For the converse, suppose f ∈ V ∗. Fix an
orthonormal basis {u1, . . . , un} for V , and suppose f(ui) = αi, for all i. Set v0 :=

∑
i αiui. Then for any j,

⟨uj , v0⟩ = ⟨uj ,
∑
i

αiui⟩ =
∑
i

αi⟨uj , ui⟩ = αj = f(uj).

Thus, f and the linear functional ⟨−, v0⟩ agree on a basis, so f(v) = ⟨v, v0⟩, for all v ∈ V □

3. Let T ∈ L(V, V ). Suppose V is a finite dimensional inner product space over C. This problem develops the
standard definition of the adjoint of T . The goal is to construct a unique linear transformation T ∗ ∈ L(V, V )
satisfying ⟨T (v), w⟩ = ⟨v, T ∗(w)⟩, for all v, w ∈ V .

(i) Fix w ∈ V . Define ϕw : V → F by ϕw(v) = ⟨T (v), w⟩. Show that ϕw ∈ V ∗.

1Recall that to define a linear transformation with domain V , it suffices to specify its value on a basis
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(ii) By The previous problem, there exists a unique w0 ∈ V such that ϕw(v) = ⟨v, w0⟩, for all v ∈ V . Set
T ∗(w) := w0. Then, by definition, ⟨T (v), w⟩ = ⟨v, T ∗(w)⟩, for all v. Doing this for each w gives a function
T ∗ : V → V . Show that T ∗ ∈ L(V, V ).

(iii) Show that T ∗ is the unique element in L(V, V ) satisfying ⟨T (v), w⟩ = ⟨v, T ∗(w)⟩, for all v ∈ V .
(iv) Let B be an orthonormal basis for V . Show that [T ∗]BB = ([T ]BB)

∗, so that the present definition of T ∗ agrees
with the one given in class.

Solution. Part (i) follows immediately from the definitions of inner product and linear transformation. For part (ii),
suppose v1, v2 ∈ V . Then for all u ∈ V we have:

⟨u, T ∗(v1 + v2)⟩ = ⟨T (u), v1 + v2⟩ = ⟨T (v), v1⟩+ ⟨T (u), v2⟩ = ⟨u, T ∗(v1)⟩+ ⟨u, T ∗(v2)⟩ = ⟨u, T ∗(v1) + T ∗(v2)⟩.

Since this holds for all u ∈ V , T ∗(v1 + v2) = T ∗(v1) + T ∗(v2). The proof that T ∗(λv) = λT ∗(v) for all λ ∈ F and
v ∈ V is similar.

For (iii), suppose S ∈ L(V, V ) satisfies ⟨T (v), w⟩ = ⟨v, S(w)⟩, for all v, w ∈ V . Then ⟨v, T ∗(w) − S(w)⟩ = 0, for all
v, w. Thus, 0 = T ∗(w)− S(w), for all w, so that T ∗ = S.

4. A sequence V : 0
i→ Vn

Tn→ Vn−1
Tn−1→ · · · T2→ V1

T1→ V0
π→ 0 of vector spaces and linear transformations is a complex

of vector spaces if the image of each Ti+1 is contained in the kernel of Ti (including i := Tn+1 and π := T0). The jth
homology of the complex is the quotient space Hj(V) := ker(Tj)/im(Tj+1). Assume that each vector space has finite
dimension. Show that Σj≥0(−1)j+1dim(Vj) = Σj≥0(−1)j+1dim(Hj(V)). Hint: Experiment with the n = 2 case.

Solution. We induct on n. Suppose n = 1. Then

dim(V0)−dim(V1) = dim(V0)−{dim ker(T1)+dim im(T1)} = {dim(V0)−dim im(T1)}−dim ker(T1) = dim(H0)−dim(H1).

Suppose n > 1. Applying the inductive hypothesis to the complex 0 → Vn−1
Tn−1→ · · · T2→ V1

T1→ V0
π→ 0, we have

n−1∑
j=0

(−1)j+1dim(Vi) =

n−2∑
j=0

(−1)j+1dim(Hj) + (−1)n−1dim ker(Tn−1).

Adding (−1)n+1dim(Vn) to both sides gives

n∑
j=0

(−1)j+1dim(Vi) =

n−2∑
j=0

(−1)j+1dim(Hj) + (−1)ndim ker(Tn−1) + (−1)n+1dim(Vn)

=

n−2∑
j=0

(−1)j+1dim(Hj) + (−1)ndim ker(Tn−1) + (−1)n+1dim im(Tn) + (−1)n+1dim ker(Tn)

=

n−2∑
j=0

(−1)j+1dim(Hj) + (−1)ndim(Hn−1) + dim ker(Tn)}

=

n∑
j=1

(−1)j+1dim(Hj). □

5. Set A :=

(
0 1
1 0

)
∈ Mn(R).

(i) For p ≥ 1, find p distinct pth roots of A
(ii) Find the solution to the system of first order linear differential equations given by the vector equation

X′(t) = A ·X(t), with initial condition X(0) =

(
3
4

)
. Here X(t) =

(
x1(t)
x2(t)

)
.

Solution. For (i), we can easily calculate that 1, -1 are the eigenvalues of A, for P =

(
1 1
1 −1

)
, P−1 = 1

2
·
(
1 1
1 −1

)
,

with P−1AP =

(
1 0
0 −1

)
. If we set C :=

(
1 0
0 (−1)p+1

)
, then Cp =

(
1 0
0 −1

)
= P−1AP . It follows that for

B := PCP−1, Bp = A. Note B = 1
2
·
(

1 + (−1)p+1 1 + (−1)p

−1 + (−1)p+1 −1 + (−1)p

)
. If we set ϵ = e

2πi
p , then B, ϵB, . . . , ϵp−1B are

p distinct pth roots of A.

2



For (ii), we have from our Daily Update of November 11, the solution to the system of equations is given by eAt ·
(
3
4

)
,

so we need to calculate eAt. Using what we have in part (i), For Dt =

(
t 0
0 −t

)
, eDt =

(
et 0
0 e−t

)
. Thus,

eAt = QeDtQ−1 =
1

2
·
(
et + e−t et − e−t

et − e−t et + e−t

)
.

6. Let {Vi}i∈I be a collection of (not necessarily finite dimensional) vector spaces. Prove the following properties of
the direct sum

⊕
i∈I Vi.

(a) For each i0 ∈ I there is a natural inclusion of vector spaces ji0 : Vi0 →
⊕

i∈I Vi.
(b) The direct sum

⊕
i∈I Vi satisfies the following universal property: Given a vector space U and a collection of

linear transformations fi : Vi → U , for each i ∈ I, there exists a unique linear transformation f :
⊕

i∈I Vi → U
satisfying f ◦ ji = fi, for all i ∈ I.

(c) For any vector space U , (
⊕

i∈I Vi)⊗ U ∼=
⊕

i∈I(Vi ⊗ U).

Solution. Part (a) is straight forward - for any io ∈ I, we define ȷi0 : Vi0 →
⊕
Vi to be that map which takes

any x ∈ Vi0 to the I-tuple that is zero in every coordinate, except the i0 coordinate, and is equal to x in the i0
coordinate.ȷi0 is clearly an injective linear transformation.

For (b) Suppose we are given a vector space U and a collection of linear transformations fi : Vi → U , for each i ∈ I.
Define f :

⊕
i Vi → U as follows: For t := (vi)i∈I ∈

⊕
i Vi, f(t) :=

∑
i fi(vi). This sum makes since, since only

finitely many of the coordinates of t are non-zero. Note that f is well defined, since the representation of elements in
the direct sum is unique. Also, it is easy to check that f is a linear transformation; it clearly satisfies f ◦ ji = fi, for
all i ∈ I.

For part (c), we with a diagram

(
⊕

i Vi)× U
f // (

⊕
i Vi)⊗ U

⊕
i(Vi ⊗ U),
��

g

ww

T

where f is the canonical map associated to the tensor product and g is the bilinear (easy to check) map defined by
g((vi)i∈I , u) := (vi⊗u)i∈I . Then there exists a unique linear transformation T : (

⊕
i Vi)⊗U →

⊕
i(Vi⊗U) satisfying

T ((vi)i ⊗u) = (vi ⊗u)i, for all vi ∈ Vi and u ∈ U . To obtain a map in the opposite direct, we start with the diagram

Vi × U
f ′
// Vi ⊗ U

(
⊕

i Vi)⊗ U
��

g′i
xx

T ′
i

with g′i : Vi ×U → (
⊕

i Vi)⊗U , the map defined by g′i(vi, u) = ji(vi)⊗ u. Then, there exists a unique T ′
i : Vi ⊗U →

(
⊕

i Vi)⊗ U satisfying T ′
i (vi ⊗ u) = ji(vi)⊗ u. Maintaining the notation from part (b), we now have a unique linear

transformation S :
⊕

i(Vi ⊗U) → (
⊕

i Vi)⊗U satisfying S ◦ ji = T ′
i , for all i ∈ I. We check that S ◦T is the identity

map, and leave it to you to check that T ◦ S is the identity map, showing that (
⊕

i∈I Vi)⊗ U ∼=
⊕

i∈I(Vi ⊗ U). For
(vi)i ⊗ u ∈ (

⊕
i Vi)⊗ U , we have

ST ((vi)i ⊗ u) = S((vi ⊗ u)i) =
∑
i

T ′
i (vi ⊗ u) =

∑
i

ji(vi)⊗ u = (vi)i ⊗ u.

□

7. Let V,W,U be vector spaces that need not be finite dimensional. Prove that (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ).

Solution. We need two linear transformations T : U ⊗ (V ⊗W ) → (U ⊗V )⊗W and S : (U ⊗V )⊗W → U ⊗ (V ⊗W )
such that ST is the identity transformation on U⊗(V ⊗W ) and TS is the identity transformation on (U⊗V )⊗W . We
will obtain T if we can find a bilinear transformation ψ : U × (V ⊗W ) → (U ⊗V )⊗W . For this, we need a map from
V ⊗W to (U ⊗V )⊗W . We temporarily fix u ∈ U and define ψu : V ×W → (U ⊗V )⊗W by ψu(v, w) := (u⊗v)⊗w.
It is straightforward to check that ϕu is bilinear. For example,

ϕu(v1 + v2, w) = (u⊗ (v1 + v2))⊗w = (u⊗ v1 + u⊗ v2)⊗w = (u1 ⊗ v1)⊗w+ (u⊗ v2)⊗w = ψu(v1, w) +ψu(v2, w).
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The other conditions for the bilinearity of ϕu follow in a similar manner. Thus, there exists a linear transformation
Tu : V ⊗W → (U ⊗ V )⊗W such that Tu ◦ ϕ0 = ψu, where ϕ0 : U × V ⊗W → U ⊗ (V ⊗W ) is the canonical map
taking (u, t) to u⊗ t, for all t ∈ V ⊗W . In particular, Tu(v ⊗ w) = (u⊗ v)⊗ w, for all v ⊗ w ∈ V ⊗W .

Now, define ψ : U × (V ⊗W ) by ψ(u, t) = Tu(t), for all t ∈ V ⊗W . It is easy to check that ψ is well defined, and
thus there exists T : U ⊗ (V ⊗W ) → (U ⊗ V ) ⊗W such that T ◦ ϕ = ψ, where ϕ : U × (V ⊗W ) → U ⊗ (V ⊗W )
is the canonical map taking (u, ρ) to u ⊗ ρ, for all ρ ∈ V ⊗W . In particular, T (u ⊗ (v ⊗ w)) = (u ⊗ v) ⊗ w, for all
u⊗ (v ⊗ w) ∈ U ⊗ (V ⊗W ).

In exactly the same way, we obtain a linear transformation S : (U⊗V )⊗W → U⊗(V⊗W ) satisfying S((u⊗v)⊗w) =
u⊗ (v⊗w), for all (u⊗v)⊗w in (U ⊗V )⊗W . Since ST (u⊗ (v⊗w)) = u⊗ (v⊗w) for all u⊗ (v⊗w) ∈ U ⊗ (V ⊗W ),
it follows that ST is the identity transformation on U ⊗ (V ⊗W ), since these elements span U ⊗ (V ⊗W ). Similarly,
TS is the identity transformation on (U ⊗ V )⊗W , and the proof is complete.
8. The vector spaces below need not be finite dimensional.

(i) Suppose that T : L → M and S : M → L are linear transformations of vector spaces such that ST is the
identity on L and TS is the identity on M . Prove that T is an isomorphism with inverse S.

(Ii) Suppose (P, f) is a tensor product of V and W . Suppose α : P → P1 is an isomorphism of vector spaces. Set
f1 := α ◦ f . Show that (P1, f1) is a tensor product of V and W .

Solution. For (i), the second statement follows immediately from the first statement. Suppose T (x) = 0, for x ∈ L.
Then x = ST (x) = S(0) = 0, so the kernel of T equals zero, and thus, T is -1-. Take y ∈M and set x := S(y). Then
y = TS(y) = T (x), showing that T is surjective, and thus, an isomorphism.

For (ii), we first note that α ◦ f : V ×W → P ′ is bilinear. For example,

α◦ f(v1+ v2, w) = α(f(v1+ v2, w)) = α(f(v1, w)+ f(v2, w)) = α(f(v1, w))+α(f(v2, w)) = α◦ f(v1, w)+α◦ f(v2, w).

The other bilinear properties follow in a similar fashion. Now suppose we are given a bilinear map g : V ×W → U .
Then there exists a unique linear transformation T : P → U such that T ◦ f = g. Thus, we have T ◦ α−1 : P ′ → U .
Note that

(T ◦ α−1) ◦ f1 = (T ◦ α−1)(α ◦ f) = T ◦ f = g.

The proof is complete if we show that T ◦α−1 is unique. Suppose S : P ′ → U satisfies S ◦f1 = g. Then S ◦(α◦f) = g.
Thus, (S ◦ α) ◦ f = g. Thus, since (P, f) is a tensor product, S ◦ α = T . Therefore, S = T ◦ α−1, which is what we
want. □

9. Let V be a vector space over F . Let L denote Span{v ⊗ v′ − v′ ⊗ v | v, v′ ∈ V } ⊆ V ⊗ V . Let v1 ∗ v2 denote the
coset v1 ⊗ v2 + L in the quotient space (V ⊗ V )/L. Set S2(V ) := (V ⊗ V )/L, the symmetric square of V .

(i) Show that the same bilinear properties holding in V ⊗ V hold with respect to the product ∗ in S2(V ).
(ii) Show that v1 ∗ v2 = v2 ∗ v1 in S2(V ), for all v1, v2 ∈ V .
(iii) Given a vector space U , a bilinear map h : V ×V → U is symmetric if h(v1, v2) = h(v2, v1) for all v1, v2 ∈ V .

Let f̂ : V × V → S2(V ) be the natural map i.e., the usual bilinear map f : V × V → V ⊗ V followed by the

quotient map from V ⊗ V → S2(V ). Prove that f̂ is a symmetric bilinear map, and given any vector space
U and a symmetric bilinear map g : V × V → U , there exists a unique linear transformation T : S2(V ) → U

such that T ◦ f̂ = g
(iv) Suppose v1, . . . , vn is a basis for V . Find a basis for S2(V ).
(v) If dim(V ) = n, what is dim(S2(V )) ?

Solution. For (i), we have

(v1 + v2) ∗ w = (v1 + v2)⊗ w + L = {v1 ⊗ w + v2 ⊗ w}+ L = {(v1 ⊗ w) + L}+ {(v2 ⊗ w) + L} = v1 ∗ w + v2 ∗ w.

The other bilinear properties follow in a similar fashion.

For (ii), we have v1 ⊗ v2 − v2 ⊗ v1 ∈ L, so that v1 ⊗ v2 + L = v2 ⊗ v2 + L, and by definition, v1 ∗ v2 = v2 ∗ v1.

For (iii), the proof that f̂ is symmetric is similar to the proof in part (ii). Now suppose g : V × V → U is bilinear

and symmetric. Then, Since g is bilinear, we have a unique map T0 : V ⊗ V → U such that T0 ◦ f̂ = g. On the
other hand, for v1, v2 ∈ V , T0(v1 ⊗ v2 − v2 ⊗ v1) = T0f(v1, v2)) − T0f(v2, v2) = g(v1, v2) − g(v2, v1) = 0, since g is
symmetric. Thus, T0 is zero on the elements of L, and thus L is in the kernel of T0. It follows that there is an induced

map T : V ⊗ V/L = S2(V ) → U such that T (v1 ∗ v2) = T0(v1 ⊗ v2), and thus, T ◦ f̂ = g. One can easily check that
T is unique, in standard fashion.

For (iv), since the n2 elements {vi⊗vj}1≤i,j≤n form a basis for V ⊗V , their images {vi∗vj}1≤i,j≤n span S2(V ). Thus,
their is a linearly independent subset of this set that forms a basis for S2(V ). Of course, for i ̸= j, vi ∗ vj = vj ∗ vi.
We will show that getting rid of the repetitions leads to a basis. For this we delete vi ∗ ∗vj with i > j. This the same
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set of vectors, but without repetitions, i.e., B := {vi ∗vi}1≤i≤j≤n still spans S2(V ). To show that the set B is linearly
independent, consider the polynomial ring in the n variables x1, . . . , xn. The set U of all homogenous polynomials of

degree two forms a vector space of dimension n(n+1)
2

, whose basis consists of all monomials of degree two, namely,

{xixj}1≤i,j≤n. Note that this set also has n(n+1)
2

elements. Define g : V × V → U as follows: For u =
∑n

i=1 aivi
and w =

∑n
j=1 bjvj in V , g(u, v) = (

∑
i aixi) · (

∑
j bjxj). Since multiplication of polynomials is bilnear (by the

distributive property) and commutative, g is a bilinear, symmetric map. Thus, there exists a (unique) T : V ∗V → U

such that T ◦ f̂ = g. Now suppose
∑

1≤i≤j≤n cij(vi ∗ vj) = 0. In other words,
∑

1≤i≤j≤n cij f̂(vi, vj) = 0. Applying
T we get ∑

1≤i≤j≤n

cijT f̂(vi, vj) =
∑

1≤i≤j≤n

cijg(vi, vj) =
∑

1≤i≤j≤n

cijx
iyj = 0.

Thus, each cij = 0, so that B is a basis for V ∗ V .

By part (iv), the dimension of V ∗ V = n(n+1)
2

. □

10. Let V and W be vector spaces. Recall that V ∗ denotes the dual space of V .

(i) Prove that there exists a unique linear transformation T : V ∗ ⊗W → L(V,W ) such that
T (f ⊗ w)(v) = f(v)w, for all f ⊗ w ∈ V ∗ ⊗W and v ∈ V .

(ii) Prove that if V and W are finite dimensional, then T is an isomorphism.

(iii) Let V = R4, W = R3, f1 =
(
1 2 3 4

)
∈ V ∗, f2 =

(
−1 0 1 0

)
∈ V ∗, w1 =

3
2
1

, w2 =

−1
0
1

. Find

the matrix of T (f1 ⊗ w1 + f2 ⊗ w2) with respect to the standard bases of V and W .

Solution. Solution. For part (i), let ϕ : V ∗ ×W → V ∗ ⊗W be the given map. We define h : V ∗ ×W → L(V,W ) as
h(f, w) = fw, where for all v ∈ V , fw(v) := f(v)w. Since f is linear, it follows immediately that fw ∈ L(V,W ), for
all w ∈W and f ∈ V ∗. Now, for f1, f2 ∈ V ∗ and w ∈W , h(f1 + f2, w) = (f1 + f2)w. Thus, for all v ∈ V we have,

h(f1 + f2, w)(v) = (f1 + f2)(v)w

= (f1(v) + f2(v))w

= f1(v)w + f2(v)w

= h(f1, w)(v) + h(f2, w)(v),

and thus, h(f1+f2, w) = h(f1, w)+h(f2, w). Similarly, one can show h(f, w1+w2) = h(f, w1)+h(f, w2). For λ ∈ F ,

h(λf,w)(v) = (λf)(v)w = λ{f(v)w} = λ{h(f, w)(v)},

showing that h(λf,w) = λh(f, w). Similarly, one can show h(f, λw) = λh(f, w), so that h is bilinear. Thus, there
exists a unique linear transformation T : V ∗ ⊗W → L(V,W ) so that Tϕ = h. In other words, T (f ⊗w) = fw, which
means T (f ⊗ w)(v) = fw(v) = f(v)w, for all v ∈ V .

For part (ii), suppose that {v1, . . . , vn} is a basis for V and {w1, . . . , wm} is a basis forW . Let {v∗1 , . . . , v∗n} denote the
corresponding dual basis for V ∗. Then {v∗i ⊗wj}1≤i≤n,1≤j≤m is a basis for V ∗⊗W . Now, for each vk, T (v

∗
i ⊗wj)(vk) =

wj , if k = i and T (v∗i ⊗ wj)(vk) = 0, if k ̸= i. This shows that T (v∗i ⊗ wj) is a basis for L(V,W ). In other words, T
takes a basis of V ∗ ⊗W to a basis of L(V,W ), and hence these spaces are isomorphic.

For part (iii), let E := {e1, e2, e3, e4} denote the standard basis of R4 and U denote the standard basis of R3. Then,

T (f1 ⊗ w1 + f2 ⊗ w2)(e1) = T (f1 ⊗ w1)(e1) + T (f2 ⊗ w2)(e2) = 1 · w1 +−1 · w2 =

4
2
0

 .

T (f1 ⊗ w1 + f2 ⊗ w2)(e2) = T (f1 ⊗ w1)(e2) + T (f2 ⊗ w2)(e2) = 2 · w1 + 0 · w2 =

6
4
2

 .

T (f1 ⊗ w1 + f2 ⊗ w2)(e3) = T (f1 ⊗ w1)(e3) + T (f2 ⊗ w2)(e3) = 3 · w1 + 1 · w2 =

8
6
4

 .

T (f1 ⊗ w1 + f2 ⊗ w2)(e4) = T (f1 ⊗ w1)(e4) + T (f2 ⊗ w2)(e4) = 4 · w1 +−0 · w2 =

12
8
4

 .
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Therefore,

[T (f1 ⊗ w1 + f2 ⊗ w2]
U
E =

4 6 8 12
2 4 6 8
0 2 4 4

 .

Bonus Problems. Each problem below is worth 10 points. Solutions must be completely correct in order to receive
any credit.

(i) Let {fn} be the Fibonacci sequence f1 = 1, f2 = 1, f3 = 2, f4 = 3, ...., fn = fn−1 + fn−2. Prove that for all
n ≥ 1,

fn =
1√
5
{
(
1 +

√
5

2

)n

−
(
1−

√
5

2

)n

}.

Hint: Write

(
fn
fn−1

)
= An−2 ·

(
u
v

)
, for some 2× 2 matrix A and u, v ∈ Z.

(ii) Let A and B be n× n matrices and set C := AB −BA. If AC = CA, prove that C is a nilpotent matrix.
(iii) Let V and W be vector spaces over C of dimensions n and m. Set U := L(V,W ). Fix isomorphisms

α ∈ L(V, V ) and β ∈ L(W,W ). Define ϕ ∈ L(U,U) by ϕ(T ) = β−1Tα, for all T ∈ U . Find formulas for
trace(ϕ) and det(ϕ) in terms of α and β.
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